Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Front Med (Lausanne) ; 8: 753055, 2021.
Article in English | MEDLINE | ID: covidwho-1581298

ABSTRACT

Objective: To assess the performance of a novel deep learning (DL)-based artificial intelligence (AI) system in classifying computed tomography (CT) scans of pneumonia patients into different groups, as well as to present an effective clinically relevant machine learning (ML) system based on medical image identification and clinical feature interpretation to assist radiologists in triage and diagnosis. Methods: The 3,463 CT images of pneumonia used in this multi-center retrospective study were divided into four categories: bacterial pneumonia (n = 507), fungal pneumonia (n = 126), common viral pneumonia (n = 777), and COVID-19 (n = 2,053). We used DL methods based on images to distinguish pulmonary infections. A machine learning (ML) model for risk interpretation was developed using key imaging (learned from the DL methods) and clinical features. The algorithms were evaluated using the areas under the receiver operating characteristic curves (AUCs). Results: The median AUC of DL models for differentiating pulmonary infection was 99.5% (COVID-19), 98.6% (viral pneumonia), 98.4% (bacterial pneumonia), 99.1% (fungal pneumonia), respectively. By combining chest CT results and clinical symptoms, the ML model performed well, with an AUC of 99.7% for SARS-CoV-2, 99.4% for common virus, 98.9% for bacteria, and 99.6% for fungus. Regarding clinical features interpreting, the model revealed distinctive CT characteristics associated with specific pneumonia: in COVID-19, ground-glass opacity (GGO) [92.5%; odds ratio (OR), 1.76; 95% confidence interval (CI): 1.71-1.86]; larger lesions in the right upper lung (75.0%; OR, 1.12; 95% CI: 1.03-1.25) with viral pneumonia; older age (57.0 years ± 14.2, OR, 1.84; 95% CI: 1.73-1.99) with bacterial pneumonia; and consolidation (95.8%, OR, 1.29; 95% CI: 1.05-1.40) with fungal pneumonia. Conclusion: For classifying common types of pneumonia and assessing the influential factors for triage, our AI system has shown promising results. Our ultimate goal is to assist clinicians in making quick and accurate diagnoses, resulting in the potential for early therapeutic intervention.

2.
Front Immunol ; 11: 585647, 2020.
Article in English | MEDLINE | ID: covidwho-874483

ABSTRACT

Cytokine storm resulting from SARS-CoV-2 infection is one of the leading causes of acute respiratory distress syndrome (ARDS) and lung fibrosis. We investigated the effect of inflammatory molecules to identify any marker that is related to lung fibrosis in coronavirus disease 2019 (COVID-19). Seventy-six COVID-19 patients who were admitted to Youan Hospital between January 21 and March 20, 2020 and recovered were recruited for this study. Pulmonary fibrosis, represented as fibrotic volume on chest CT images, was computed by an artificial intelligence (AI)-assisted program. Plasma samples were collected from the participants shortly after admission, to measure the basal inflammatory molecules levels. At discharge, fibrosis was present in 46 (60.5%) patients whose plasma interferon-γ (IFN-γ) levels were twofold lower than those without fibrosis (p > 0.05). The multivariate-adjusted logistic regression analysis demonstrated the inverse association risk of having lung fibrosis and basal circulating IFN-γ levels with an estimate of 0.43 (p = 0.02). Per the 1-SD increase of basal IFN-γ level in circulation, the fibrosis volume decreased by 0.070% (p = 0.04) at the discharge of participants. The basal circulating IFN-γ levels were comparable with c-reactive protein in the discrimination of the occurrence of lung fibrosis among COVID-19 patients at discharge, unlike circulating IL-6 levels. In conclusion, these data indicate that decreased circulating IFN-γ is a risk factor of lung fibrosis in COVID-19.


Subject(s)
Coronavirus Infections/complications , Interferon-gamma/blood , Pneumonia, Viral/complications , Pulmonary Fibrosis/etiology , Aged , Artificial Intelligence , Biomarkers/blood , COVID-19 , Cohort Studies , Coronavirus Infections/blood , Coronavirus Infections/diagnostic imaging , Coronavirus Infections/immunology , Cross-Sectional Studies , Female , Humans , Inflammation/immunology , Male , Middle Aged , Pandemics , Pneumonia, Viral/blood , Pneumonia, Viral/diagnostic imaging , Pneumonia, Viral/immunology , Pulmonary Fibrosis/blood , Pulmonary Fibrosis/diagnostic imaging , Risk Factors , Tomography, X-Ray Computed
3.
J Xray Sci Technol ; 28(5): 885-892, 2020.
Article in English | MEDLINE | ID: covidwho-648680

ABSTRACT

In this article, we analyze and report cases of three patients who were admitted to Renmin Hospital, Wuhan University, China, for treating COVID-19 pneumonia in February 2020 and were unresponsive to initial treatment of steroids. They were then received titrated steroids treatment based on the assessment of computed tomography (CT) images augmented and analyzed with the artificial intelligence (AI) tool and output. Three patients were finally recovered and discharged. The result indicated that sufficient steroids may be effective in treating the COVID-19 patients after frequent evaluation and timely adjustment according to the disease severity assessed based on the quantitative analysis of the images of serial CT scans.


Subject(s)
Coronavirus Infections/diagnostic imaging , Coronavirus Infections/drug therapy , Glucocorticoids/therapeutic use , Pneumonia, Viral/diagnostic imaging , Pneumonia, Viral/drug therapy , Tomography, X-Ray Computed/methods , Aged , Artificial Intelligence , Betacoronavirus , COVID-19 , China , Coronavirus Infections/pathology , Coronavirus Infections/physiopathology , Dose-Response Relationship, Drug , Female , Humans , Lung/diagnostic imaging , Lung/drug effects , Lung/pathology , Lung/physiopathology , Male , Middle Aged , Pandemics , Pneumonia, Viral/pathology , Pneumonia, Viral/physiopathology , Retrospective Studies , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL